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Abstract
In this paper, we investigate the monotonicity and convexity of the function x �→
Ka(

√
x)/ log(1+ c/

√
1 − x) on (0, 1) for (a, c) ∈ (0, 1/2]× (0,∞), and the log-concavity

of the function x �→ (1 − x)λKa(
√
x) on (0, 1) for λ ∈ R, where Ka(r) is the generalized

elliptic integral of the first kind. These results are the generalization of [1, Theorem 2] and
[2, Theorems 1.7 and 1.8], also give an affirmative answer of [3, Problem 3.1].

Keywords Gaussian hypergeometric function · Generalized elliptic integrals ·
Monotonicity · Log-concavity

Mathematics Subject Classification 33E05 · 26E60

1 Introduction

Throughout this paper, we denote N = {1, 2, 3, · · · } and N0 = N ∪ {0}. For real numbers
a, b and c with −c /∈ N0, the Gaussian hypergeometric function is defined by

F(a, b; c; x) ≡ 2F1(a, b; c; x) =
∞∑

n=0

(a)n(b)n
(c)n

xn

n! for |x | < 1,

where (a)0 = 1 for a 	= 0 and (a)n is the shifted factorial function or Pochhammer symbol
given by

(a)n = a(a + 1)(a + 2) · · · (a + n − 1) = �(a + n)

�(a)

for n ∈ N. Here �(x) = ∫ ∞
0 t x−1e−t dt (x > 0) is the Euler gamma function.
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The hypergeometric function F(a, b; c; x) has a simple derivative formula

F ′(a, b; c; x) = ab

c
F(a + 1, b + 1; c + 1; x). (1.1)

The behavior of the hypergeometric function near x = 1 in the three cases a + b < c,
a + b = c and a + b > c (see [4, Theorems 1.19 and 1.48]), is given by

⎧
⎪⎨

⎪⎩

F(a, b; c; 1) = �(c)�(c−a−b)
�(c−a)�(c−b) , a + b < c,

B(a, b)F(a, b; c; x) + log(1 − x) = R(a, b) + O((1 − x) log(1 − x)), a + b = c,
F(a, b; c; x) = (1 − x)c−a−bF(c − a, c − b; c; x), a + b > c,

(1.2)

where B(z, w) = [�(z)�(w)]/�(z + w) (�(z) > 0,�(w) > 0) is the classical beta
function,

R(a, b) = −2γ − ψ(a) − ψ(b) (1.3)

is the Ramanujan constant, ψ(z) = �′(z)/�(z) (�(z) > 0) and γ is the Euler-Mascheroni
constant.

For r ∈ (0, 1) and a ∈ (0, 1), the generalized elliptic integrals of first and second kinds
(see [5]) are defined by

Ka ≡ Ka(r) = π

2
F

(
a, 1 − a; 1; r2) , (1.4)

Ea ≡ Ea(r) = π

2
F

(
a − 1, 1 − a; 1; r2) . (1.5)

Clearly, Ka(0) = Ea(0) = π/2, Ea(1−) = sin(πa)/[2(1 − a)] and Ka(1−) = ∞. In
particular, K1/2(r) ≡ K(r) is the complete elliptic integral of the first kind. By symmetry of
(1.4), we assume that a ∈ (0, 1/2] in the sequel. In our parameter’s setting, we denote by

R(a) ≡ R(a, 1 − a) = −2γ − ψ(a) − ψ(1 − a), R(1/2) = 4 log 2, (1.6)

where R(a, b) is defined in (1.3).
It is well known that the generalized elliptic integral of the first kind plays an important

role in different branches of modern mathematics such as classical real and complex anal-
ysis, quasiconformal mappings, number theory, such as the modulus of the plane Grötzsch
ring [6–8] and Ramanujan’s modular equation [9–17]. In particular, many remarkable results
involving complete elliptic integral of the first kind can be found in [18–20] and its general-
ization (see [21–26]). For more informations and related recently published articles, we refer
to the literature [27–37] and references therein.

As we know, the asymptotic formula for the zero-balanced case a + b = c in (1.2) is due
to Ramanujan (see [38]). In the case of a = b = 1/2, the Ramanujan asymptotic formula
reduces to

K(r) ∼ log
4

r ′ (1.7)

as r → 1−, where and in what follows r ′ = √
1 − r2.

In order to refine the asymptotic formula (1.7), Anderson, Vamanamurthy and Vuorinen
[39] in 1992 conjectured and later Qiu et al. [40] proved that

K(r) < log

(
1 + 4

r ′

)
−

(
log 5 − π

2

)
(1 − r) (1.8)

holds for all r ∈ (0, 1).
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Recently, motivated by (1.8), Yang and Tian [1] investigated the monotonicity of the
function x �→ K(

√
x)/ log(1 + 4/

√
1 − x) on (0, 1) and it is extended to the generalized

elliptic integral of the first kind by Zhao et al. [3], where the authors proved that the function

r �→ Ka(r)

log[1 + 2/(ar ′)]
is strictly increasing on (0, 1) if and only if 0.3199 · · · ≤ a ≤ 1/2, and strictly decreasing
on (0, 1) if 0 < a ≤ 0.1899 · · · . And they also pose two problems in the end of [3], one of
which is stated as follows.

Problem 1.1 Determine the best possible function c(a) for a ∈ (0, 1/2] such that the function
r �→ Ka(r)

log[1 + c(a)/r ′]
is strictly increasing or decreasing on (0, 1).

The first aim of this paper is to give an answer to Problem 1.1.

Theorem 1.2 Let a ∈ (0, 1/2], c ∈ (0,∞) and define the function F(x) on (0, 1) by

F(x) ≡ F(x, a, c) = Ka(
√
x)

log(1 + c/
√
1 − x)

.

Then we have the following conclusion:

(1) F(x) is strictly increasing from (0, 1) onto
(
π/[2 log(1 + c)], sin(aπ)

)
if and only if

c ≥ maxa∈(0,1/2]{c∗(a), eR(a)/2}, where c∗(a) is the unique root of �(c) = 1/[a(1− a)]
for c ∈ (0,∞) and �(c) is defined as in Lemma 2.6. In particular, the double inequality

π

2 log(1 + c)
log

(
1 + c

r ′
)

< Ka(r) < sin(aπ) log
(
1 + c

r ′
)

(1.9)

holds for all r ∈ (0, 1).
(2) If 0 < c ≤ maxa∈(0,1/2]{c∗(a), c1(a)}, then F(x) is strictly decreasing from (0, 1) onto(

sin(aπ), π/[2 log(1+c)]), where c∗(a) is the unique root of�(c) = R(a) for c ∈ (0,∞)

and c1(a) is given as in Lemma 2.5. In this case, the reverse inequality of (1.9) holds for
all r ∈ (0, 1).

In the same paper as before, Yang and Tian [1] conjectured the function

x �→ (1 − x)pK(
√
x) (1.10)

is log-concave on (0, 1) if and only if p ≥ 7/32, and the function

x �→ K(
√
x)

log(1 + 4/
√
1 − x)

(1.11)

is convex on (0, 1). Very recently, these two conjectures had been proved by Wang et al. [2].
The remaining goal in this paper is to generalize the results of two functions in (1.10), (1.11)
to the case of the generalized elliptic integral of the first kind. We will prove the following
theorems.

Theorem 1.3 Let a ∈ (0, 1/2] and define G(x) on (0, 1) by

G(x) ≡ G(x, a, λ) = (1 − x)λKa(
√
x).

Then G(x) is log-concave on (0, 1) if and only if λ ≥ λ(a) := [a(1− a)(a2 − a + 2)]/2 and
log-convex on (0, 1) if and only if λ ≤ 0.
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Theorem 1.4 Let a ∈ (0, 1/2], c ∈ (0,∞) and F(x) be defined as in Theorem 1.2. Then
F(x) is convex on (0, 1) if c ≥ maxa∈(0,1/2]

{
c∗(a), eR(a)/2

}
, where c∗(a) is defined as in

Theorem 1.2.

2 Lemmas

In order to prove our main results, we need to introduce some basic knowledges and establish
several lemmas which we present in this section.

Let us recall the differentiation formulae for the generalized complete elliptic integrals,
which can be found in [5, Theorem 4.1]

dKa

dr
= 2(1 − a)(Ea − r ′2Ka)

rr ′2 ,
dEa
dr

= 2(a − 1)(Ka − Ea)
r

,

d

dr
(Ka − Ea) = 2(1 − a)rEa

r ′2 ,
d

dr
(Ea − r ′2Ka) = 2arKa .

It is worth noting that the L’Hôpital Monotone Rule has been widely applied, see [41–43]. In
this paper, we also need another useful monotone rule to deal with the ratio of power series.
Before stating this monotone rule, we need to introduce a useful auxiliary function H f ,g; see
[44] for more properties. For −∞ ≤ a < b ≤ ∞, let f and g be differentiable on (a, b) and
g′ 	= 0 on (a, b). Then the function H f ,g is defined by

H f ,g := f ′

g′ g − f .

In particular, if f and g are twice differentiable on (0, 1), then we have
(

f

g

)′
= g′

g2

(
f ′

g′ g − f

)
= g′

g2
H f ,g, (2.1)

H ′
f ,g =

(
f ′

g′

)′
g. (2.2)

Lemma 2.1 ( [45]) Suppose that the power series f (x) = ∑∞
n=0 anx

n and g(x) =∑∞
n=0 bnx

n have the radius of convergence r > 0 with bn > 0 for all n ∈ N0. Then
the following statements hold true:

(1) If the non-constant sequence {an/bn}∞n=0 is increasing (decreasing) for all n ≥ 0, then
f (x)/g(x) is strictly increasing (decreasing) on (0, r);

(2) If for certain m ∈ N the sequence {ak/bk}0≤k≤m and {ak/bk}k≥m both are non-constant,
and they are increasing (decreasing) and decreasing (increasing), respectively. Then
f (x)/g(x) is strictly increasing (decreasing) on (0, r) if and only if H f ,g(r−) ≥ (≤)0. If
H f ,g(r−) < (>)0, then there exists x0 ∈ (0, r) such that f (x)/g(x) is strictly increasing
(decreasing) on (0, x0) and strictly decreasing (increasing) on (x0, r).

Remark 2.1 The first part of Lemma 2.1 is first established by Biernacki and Krzyz [46],
while the second part comes from Yang et al. [47, Theorem 2.1]. But we cite the latest
version of the second part [45, Lemma 2], where the authors have corrected the previous bug
[47, Theorem 2.1].

Lemma 2.2 (1) The function r �→ (Ea − r ′2Ka)/(r2Ka) is strictly decreasing from (0, 1)
onto (0, a).
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(2) The function r �→ (Ea − r ′2Ka)/r2 has positive Maclaurin coefficients and maps (0, 1)
onto (πa/2, sin(πa)/[2(1 − a)]).

Proof Parts (1) and (2) can be found in the literature [4, Theorem 4.22 (viii) and (ix)]. ��
It is still not easy to study the monotonicity of the ratio of functions related to the square of

power series even by using Lemma 2.1. The following proposition is the key tool to deal with
the square of power series. We will give the following recurrence formula for the Maclaurin
coefficients of F(a, b; c; x)2, although we only use a special case in this paper.

Proposition 2.3 Let a, b, c ∈ R with {−c,−2c} ∩ N0 = ∅, and define

F ≡ F(a, b; c; x), F− ≡ F(a − 1, b; c; x)
on (0, 1). Suppose that F2 = ∑∞

n=0 unx
n is the Maclaurin series of F2, where un =

un(a, b, c) depends on a, b, c. Then the coefficients un satisfy the following recurrence rela-
tion

un+1 = αnun − βnun−1 (2.3)

for n ∈ N with u0 = 1 and u1 = 2ab/c, where

αn = 2n3 + 3(a + b + c − 1)n2 + [(2a − 1)(2b − 1) + (a + b)(4c − 1) − c] n + 2ab(2c − 1)

(n + 1)(n + c)(n + 2c − 1)
,

βn = (n + 2a − 1)(n + 2b − 1)(n + a + b − 1)

(n + 1)(n + c)(n + 2c − 1)
.

Proof Let FF− = ∑∞
n=0 vnxn and F2− = ∑∞

n=0 wnxn , where vn = vn(a, b, c) and wn =
wn(a, b, c) are the Maclaurin coefficients of FF− and F2−, respectively. It is clear that u0 =
v0 = w0 = 1.

By [6, Theorem 3.12] (see also [15, p.86]), we have the following derivative formulas

dF

dx
= (c − a)F− + (a − c + bx)F

x(1 − x)
and

dF−
dx

= (a − 1)(F − F−)

x
. (2.4)

By differentiation and (2.4),

d(F2)

dx
= 2(c − a)FF− + 2(a − c + bx)F2

x(1 − x)
=

∞∑

n=1

nunx
n−1, (2.5)

d(FF−)

dx
= (c − a)F2− + [1 − c + (a + b − 1)x]FF− + (a − 1)(1 − x)F2

x(1 − x)
=

∞∑

n=1

nvnx
n−1, (2.6)

d(F2−)

dx
= 2(a − 1)

x
(FF− − F2−) =

∞∑

n=1

nwnx
n−1. (2.7)

Multiplying two sides of (2.5), (2.6) by x(1 − x) and two sides of (2.7) by x , we obtain

2(c − a)

∞∑

n=0

vnx
n + 2(a − c + bx)

∞∑

n=0

unx
n

= 2(c − a)

∞∑

n=1

vnx
n + 2(a − c)

∞∑

n=1

unx
n + 2b

∞∑

n=0

unx
n+1 (2.8)
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=
∞∑

n=1

[
2(c − a)vn + 2(a − c)un + 2bun−1

]
xn =

∞∑

n=1

[
nun − (n − 1)un−1

]
xn,

(c − a)

∞∑

n=0

wnx
n + [1 − c + (a + b − 1)x]

∞∑

n=0

vnx
n + (a − 1)(1 − x)

∑

n=0

unx
n

=
∞∑

n=1

[
(c − a)wn + (1 − c)vn + (a + b − 1)vn−1 + (a − 1)(un − un−1)

]
xn

=
∞∑

n=1

[
nvn − (n − 1)vn−1

]
xn (2.9)

and

2(a − 1)
∞∑

n=1

[vn − wn] x
n =

∞∑

n=1

nwnx
n . (2.10)

Comparing the coefficients of xn in (2.8), (2.9) and (2.10) leads to

2(c − a)vn + 2(a − c)un + 2bun−1 = nun − (n − 1)un−1, (2.11)

(c − a)wn + (1 − c)vn + (a + b − 1)vn−1 + (a − 1)(un − un−1) = nvn − (n − 1)vn−1,

(2.12)

2(a − 1)(vn − wn) = nwn . (2.13)

By solving wn from (2.13) and substituting into (2.12), we obtain
[
2(a − 1)(c − a)

n + 2(a − 1)
+ 1 − c − n

]
vn + (a + b + n − 2)vn−1 = (1 − a)(un − un−1),

or equivalently,
[
2(a − 1)(c − a)

n + 2a − 1
− c − n

]
vn+1 + (a + b + n − 1)vn = (1 − a)(un+1 − un).

By (2.11), substituting the expressions of vn and vn+1 into the above gives the recurrence
relation of (2.3). ��

We now state the following lemma as a special case of Proposition 2.3. In the rest of this
article, we remind that the notations of un , αn and βn are always expressed as in Lemma 2.4
if no risk for confusion.

Lemma 2.4 For a ∈ (0, 1/2], suppose that [F(a, 1 − a; 2; x)]2 has the Maclaurin series
expansion

∑∞
n=0 unx

n, where un = un(a, 1 − a, 2) is defined in Proposition 2.3. Then the
coefficients un > 0 for n ∈ N0 with u0 = 1 and u1 = a(1 − a), and satisfy the following
recurrence relation

un+1 = αnun − βnun−1 f or n ∈ N, (2.14)

where

αn = 2[n3 + 3n2 + 2(1 + a − a2)n + 3a(1 − a)]
(n + 1)(n + 2)(n + 3)

, βn = n[n2 − (1 − 2a)2]
(n + 1)(n + 2)(n + 3)

.
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Proof From Proposition 2.3, it remains to show un > 0 for n ≥ N0. Applying the Cauchy
product of series,

[F(a, 1 − a; 2; x)]2 =
[ ∞∑

n=0

(a)n(1 − a)n

(n!)2 xn
]2

=
∞∑

n=0

unx
n,

where

un =
n∑

k=0

(a)k(1 − a)k(a)n−k(1 − a)n−k

(k!)2[(n − k)!]2 > 0

for a ∈ (0, 1/2]. ��
Lemma 2.5 Let a ∈ (0, 1/2], c ∈ (0,∞) and define the sequence Qn(a, c) for n ∈ N by

Qn ≡ Qn(a, c) = −c2n3 + [
3 + 2a − 2a2)c2 − 6

]
n2 + [

9a(1 − a) − (2 + 3a − 3a2)c2
]
n

+ 2a(1 − a)(1 − a + a2) + 2a(1 − a)(1 + a − a2)c2.

Then we have the following conclusions:

(1) Qn(a, c) < 0 for n ≥ 3 and (a, c) ∈ (0, 1/2] × (0,∞).
(2) If (a, c) ∈ (0, 1/2] × (0, c1(a)], then Q1(a, c) ≤ 0 and Q2(a, c) < 0; if (a, c) ∈

(0, 1/2] × [c2(a),∞), then Q1(a, c) > 0. In particular, 1 < c1(a) ≤ c2(a) for a ∈
(0, 1/2] with the equality only for a = 1/2, where

c1(a) =
√
6 − 11a + 13a2 − 4a3 + 2a4

a(1 − a)(1 + 2a − 2a2)
, c2(a) = 1

a(1 − a)
− 1.

Proof (1) Let


Qn = Qn+1 − Qn = −3c2n2 +
[
(3 + 4a − 4a2)c2 − 12

]
n − a(1 − a)c2 − 3(2 − 3a + 3a2),


2Qn = 
Qn+1 − 
Qn = −6c2n + 4a(1 − a)c2 − 12.

For (a, c) ∈ (0, 1/2] × (0,∞) and n ≥ 1, it can be easily seen that


2Qn ≤ −6c2 + 4a(1 − a)c2 − 12 = − [
(6 − 4a + 4a2)c2 + 12

]
< 0.

In other words, 
Qn is strictly decreasing for n ≥ 1. This gives


Qn ≤ 
Q2 = −
[
30 − 9a + 9a2 + 7(1 − 2a)2 + 17

4
c2

]
< 0

and so Qn is strictly decreasing for n ≥ 2. Similarly, we obtain

Qn(a, c) ≤ Q3 = −
[

(1 − 2a)2(57 − 4a + 4a2) + 375

8
+ (3 − a)(2 + a)(1 − 2a + 2a2)c2

]
< 0

for n ≥ 3. This completes the proof of (1).
(2) If (a, c) ∈ (0, 1/2] × (0, c1(a)], then we can directly verify that

Q1(a, c) = −6 + 11a − 13a2 + 4a3 − 2a4 + a(1 − a)(1 + 2a − 2a2)c2 ≤ Q1(a, c1(a)) = 0

123
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and

Q2(a, c) = −24 + 20a − 22a2 + 4a3 − 2a4 + 2a(1 − a2)(2 − a)c2

≤ Q2(a, c1(a)) = −12a(1 − a)(5 − 2a + 2a2)

1 + 2a − 2a2
< 0.

If (a, c) ∈ (0, 1/2] × [c2(a),∞), then we have

Q1(a, c) = −6 + 11a − 13a2 + 4a3 − 2a4 + a(1 − a)(1 + 2a − 2a2)c2

≥ Q1(a, c2(a)) = (1 − 2a)2(1 − 2a + 2a2)

a(1 − a)
> 0.

Finally, inequalities c2(a) ≥ c1(a) > 1 for a ∈ (0, 1/2] follows easily from

c22(a) − c21(a) = (1 − 2a)2(1 − 2a + 2a2)

a2(1 − a)2(1 + 2a − 2a2)
≥ 0, c21(a) − 1 = 6(1 − 2a + 2a2)

a(1 − a)(1 + 2a − 2a2)
> 0.

��
Lemma 2.6 For a ∈ (0, 1/2] and c ∈ (0,∞), the function

x �→ η(x) ≡ η(x, a, c) = R(a) − log(1 − x)

log(1 + c/
√
1 − x)

is strictly decreasing on (0, 1) if and only if �(c) ≤ R(a), where �(c) = 2(1+1/c) log(1+c).
In particular, if 0 < c ≤ 1, then �(c) ≤ R(a) for a ∈ (0, 1/2].
Proof Differentiation yields

η′(x) = η̂(x)

2(1 − x)(c + √
1 − x)

[
log(1 + c/

√
1 − x)

]2 , (2.15)

where

η̂(x) = 2(c + √
1 − x) log

(
1 + c√

1 − x

)
− c

[
R(a) − log(1 − x)

]
.

Let �(c) = 2(1 + 1/c) log(1 + c). It is clear that η̂(0) = c
[
�(c) − R(a)

]
. Moreover,

η̂′(x) = − log(1 + c/
√
1 − x)√

1 − x
< 0

for x ∈ (0, 1) and η̂(x) is strictly decreasing on (0, 1). By (2.15), η(x) is strictly decreasing
on (0, 1) if and only if η̂(0) ≤ 0, namely, �(c) ≤ R(a).

In particular, it can be easily verified that the function

c �→ 2(1 + c) log(1 + c)

c

is strictly increasing on (0,∞) by L’Hôpital Monotone Rule. This together with (1.6) gives

�(c) ≤ �(1) = 4 log 2 = R(1/2) ≤ R(a) for 0 < c ≤ 1,

since R(a) is strictly decreasing on (0, 1/2] (see [48, Theorem 1(1)] and also [50,
Lemma 2.1]). ��

123
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Lemma 2.7 For a ∈ (0, 1/2], the function

g(x) = 2x(1 − x)Ka(
√
x) − (1 − a)(1 − 2x)

[Ea(
√
x) − (1 − x)Ka(

√
x)

]

x
[
(1 − a)Ea(

√
x) + a(1 − x)Ka(

√
x))

]

is strictly decreasing from (0, 1) onto (1, a2 − a + 2).

Proof Let

g1(x) = 2x(1 − x)Ka(
√
x) − (1 − a)(1 − 2x)

[Ea(
√
x) − (1 − x)Ka(

√
x)

]
,

g2(x) = x
[
(1 − a)Ea(

√
x) + a(1 − x)Ka(

√
x))

]
.

By (1.4) and (1.5), we can rewrite g(x), in terms of power series, as

g(x) = g1(x)

g2(x)
=

∑∞
n=0 anx

n

∑∞
n=0 bnx

n
,

where

a0 = a2 − a + 2, an = − (a)n−1(1 − a)n−1

n!(n + 1)! pn (n ≥ 1),

b0 = 1, bn = − (a)n−1(1 − a)n−1

n!(n + 1)! qn (n ≥ 1)

and

pn = (a2 − a + 2)n2 + (5a2 − 5a + 2)n − a(1 − a)(2 − a + a2),

qn = (n + 1)[(a2 − a + 1)n − a(1 − a)].
For a ∈ (0, 1/2] and n ≥ 1, it can be easily verified that

pn ≥ [(a2 − a + 2) + (5a2 − 5a + 2)]n − a(1 − a)(2 − a + a2)

≥ 2(2 − 3a + 3a2) − a(1 − a)(2 − a + a2) = 33 + (1 − 2a)2(31 − 4a + 4a2)

16
> 0

and

qn ≥ (n + 1)[(a2 − a + 1) − a(1 − a)] = (n + 1)(1 − 2a + 2a2) > 0.

Since an/bn = pn/qn and pn, qn > 0 for n ≥ 1, it follows that

sgn

(
an+1

bn+1
− an

bn

)
= sgn(pn+1qn − pnqn+1). (2.16)

Moreover,

pn+1qn − pnqn+1

a(1 − a)

= (2 − 3a + 3a2)n2 + 3 + (1 − 2a)2(13 − 4a + 4a2)

8
n − a(1 − a)(2 − 3a + 3a2)

≥ (2 − 3a + 3a2) + 3 + (1 − 2a)2(13 − 4a + 4a2)

8
− a(1 − a)(2 − 3a + 3a2)

= 21 + (1 − 2a)2(43 − 20a + 20a2)

16
> 0.

This in conjunction with (2.16) implies an/bn is strictly increasing for n ∈ N.
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Since bn < 0 for n ∈ N, it follows from (2.1) that

sgn(g1/g2)
′ = sgn(g′

2) · sgn(Hg1,g2) = −sgn(Hg1,g2). (2.17)

According to this with (2.2) and g2(x) > 0, it suffices to show the monotonicity of
g′
1(x)/g

′
2(x).

Making use of power series,

g′
1(x)

g′
2(x)

=
∑∞

n=1 nanx
n−1

∑∞
n=1 nbnx

n−1
=

∑∞
n=0 a

′
nx

n

∑∞
n=0 b

′
nx

n
,

where a′
n = −(n + 1)an+1 and b′

n = −(n + 1)bn+1. Since a′
n, b

′
n > 0 and a′

n/b
′
n =

an+1/bn+1, Lemma 2.1(1) and the monotonicity of {an/bn}∞n=1 lead to the conclusion that
g′
1(x)/g

′
2(x) is strictly increasing on (0, 1) and so is Hg1,g2(x). This gives

Hg1,g2(x) > Hg1,g2(0
+) = a1

b1
b0 − a0 = a(1 − a)(3a2 − 3a + 2)

2(2a2 − 2a + 1)
> 0.

Combining this with (2.17) implies the monotonicity of g(x). Two limiting values are clear.
��

Lemma 2.8 For a ∈ (0, 1/2], the function

ϕ(r) = ar2r ′2K2
a − (1 − a)(Ea − r ′2Ka)

2 − (r ′2 − r2)Ka(Ea − r ′2Ka)

r4K2
a

is strictly decreasing from (0, 1) onto (0, a(a2 − a + 2)/2).

Proof Let ϕ1(r) = ar2r ′2K2
a − (1 − a)(Ea − r ′2Ka)

2 − (r ′2 − r2)Ka(Ea − r ′2Ka) and
ϕ2(r) = r4K2

a . Then we clearly see that ϕ(r) = ϕ1(r)/ϕ2(r) and ϕ1(0) = ϕ2(0) = 0.
Differentiation leads to

ϕ′
1(r) = 4rK2

a(Ea − r ′2Ka) − 2(1 − a)(r ′2 − r2)
(Ea − r ′2Ka)

2

rr ′2

= 2(Ea − r ′2Ka)

rr ′2
[
2r2r ′2Ka − (1 − a)(r ′2 − r2)(Ea − r ′2Ka)

]
,

ϕ′
2(r) = 4r3K2

a + 2r3Ka
2(1 − a)(Ea − r ′2Ka)

r ′2 = 4r3Ka

r ′2
[
(1 − a)Ea + ar ′2Ka

]
.

By simplifying, we obtain

ϕ′
1(r)

ϕ′
2(r)

= Ea − r ′2Ka

2r2Ka
g(r2), (2.18)

where g(x) is defined in Lemma 2.7.
Lemmas 2.2(1), 2.7 and (2.18) lead to the conclusion thatϕ′

1(r)/ϕ
′
2(r) is strictly decreasing

on (0, 1), and so is ϕ(r) by l’Hôpital Monotone Rule (see [4, Theorem 1.25]). It is clear that
ϕ(1−) = 0. By L’Hôpital’s Rule, it follows from Lemma 2.2(1) and 2.7 that

ϕ(0+) = lim
r→0+

ϕ′
1(r)

ϕ′
2(r)

= a(a2 − a + 2)

2
.

��
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Lemma 2.9 Let a ∈ (0, 1/2] and define the function 
(r) on (0, 1) by


(r) ≡ 
(r , a, λ) = (1 − a)(Ea − r ′2Ka)

r2r ′2Ka
− λ

r ′2 .

Then 
 is strictly decreasing if and only if λ ≥ [a(1 − a)(a2 − a + 2)]/2 and strictly
increasing if and only if λ ≤ 0. If 0 < λ < [a(1 − a)(a2 − a + 2)]/2, then 
 is piecewise
monotone on (0, 1).

Proof Differentiating 
(r) yields


′(r) = (1 − a)
2ar3r ′2K2

a − (Ea − r ′2Ka)[2rr ′2Ka − 2r3Ka + 2(1 − a)r(Ea − r ′2Ka)]
r4r ′4K2

a
− 2λr

r ′4

= 2(1 − a)r

r ′4

[
ar2r ′2K2

a − (1 − a)(Ea − r ′2Ka)
2 − (r ′2 − r2)Ka(Ea − r ′2Ka)

r4K2
a

− λ

1 − a

]
.

This together with Lemma 2.8 completes the proof of Lemma 2.9. ��
Lemma 2.10 Let a ∈ (0, 1/2] and define h(x) on (0, 1) by

h(x) = Ea(
√
x) − (1 − x)Ka(

√
x) − (1 − x)

[
(1 + (2a − 1)x)Ka(

√
x) − Ea(

√
x)

]
[Ea(

√
x) − (1 − x)Ka(

√
x)

]2 .

Then the following statements are true:

(1) h(x) is strictly increasing on (0, 1) if and only if a = 1/2;
(2) If a ∈ (0, 1/2), then there exists a number x1 ∈ (0, 1) such that h(x) is strictly decreasing

on (0, x1) and strictly increasing on (x1, 1).

Moreover, h(0+) = 2(1−a+a2)/(πa) and h(1−) = 2(1−a)/ sin(πa)with h(0+) < h(1−).

Proof Let h1(x) = Ea(
√
x)−(1−x)Ka(

√
x)−(1−x)

[
(1 + (2a − 1)x)Ka(

√
x) − Ea(

√
x)

]

and h2(x) = [Ea(
√
x) − (1 − x)Ka(

√
x)

]2.
By (1.4) and (1.5), one has

h1(x) = π

2
ax2

∞∑

n=0

(a)n(1 − a)n(2 − 2a + 2a2 + 3n)

n!(n + 2)! xn, h2(x) = π2

4
a2x2 [F(a, 1 − a; 2; x)]2 .

Applying Lemma 2.4, we rewrite h(x) as

h(x) = h1(x)

h2(x)
= 2

πa

∑∞
n=0 vnxn∑∞
n=0 unx

n
,

where un is defined as Lemma 2.4 and

vn = (a)n(1 − a)n(2 − 2a + 2a2 + 3n)

n!(n + 2)! .

Since vn > 0 and un > 0, it can be easily seen that

sgn

(
vn+1

un+1
− vn

un

)
= −sgn

(
un+1 − vn+1

vn
un

)
. (2.19)

By (2.14), we denote by

dn = un+1 − vn+1

vn
un = α̂nun − βnun−1, (2.20)
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where

α̂n = αn − vn+1

vn
= κn(a)

(n + 1)(n + 2)(n + 3)(3n + 2a2 − 2a + 2)

and κn(a) = 3n4 + 2(a2 − a + 4)n3 + 3(1 + a − a2)n2 − (6a4 − 12a3 + 17a2 − 11a +
2)n + 2a(1 − a)(1 − 2a)2.

Due to

κn+1(a) − κn(a) = 12n3 + 6(a2 − a + 7)n2 + 42n + 6[2 + a(1 − a)(2 − a + a2)]
≥ 12 + 6(a2 − a + 7) + 42 + 6[2 + a(1 − a)(2 − a + a2)]
= 108 + 6a(1 − a)(1 − a + a2) > 0

for a ∈ (0, 1/2] and n ≥ N, it follows that

κn(a) ≥ κ1(a) = 2[6 + 7a(1 − a)(1 + a − a2)] > 0

for n ∈ N and so α̂n > 0 for n ∈ N.
For a ∈ (0, 1/2], we now prove dn < 0 for n ∈ N by mathematical induction.
By (2.20) and Lemma 2.4, we can verify

d1 = −a(1 − a)(1 − a + a2)(4 − 7a + 7a2)

12(5 − 2a + 2a2)
< 0.

Assume that dn < 0 for n ≥ 1, that is

un <
βn

α̂n
un−1, (2.21)

then it follows from (2.14) and (2.20) together with α̂n > 0, βn > 0 and un > 0 that

dn+1 = α̂n+1un+1 − βn+1un = α̂n+1(αnun − βnun−1) − βn+1un

= (α̂n+1αn − βn+1)un − α̂n+1βnun−1 < 0,

if α̂n+1αn − βn+1 ≤ 0. Otherwise, if α̂n+1αn − βn+1 > 0, combining this with (2.21), we
obtain

dn+1 < (α̂n+1αn − βn+1)
βn

α̂n
un−1 − α̂n+1βnun−1 = βn

α̂n

(
α̂n+1

vn+1

vn
− βn+1

)
un−1 < 0,

since

α̂n+1
vn+1

vn
− βn+1 = − a(1 − a)κ̂n(a)

(n + 1)(n + 2)(n + 3)2(n + 3)(3n + 2 − 2a + 2a2)

and

κ̂n(a) = 6n3 + (20 − 17a + 17a2)n2 + 1

8

[
105 + (1 − 2a)2(103 − 12a + 12a2)

]
n

+ 2(6 − 19a + 26a2 − 14a3 + 7a4)

≥ κ̂1(a) = 1

4

[
153 + (1 − 2a)2(103 − 20a + 20a2)

]
> 0.

By mathematical induction, we show that dn < 0 for n ∈ N and so the sequence {vn/un} is
strictly increasing for n ∈ N by (2.19) and (2.20).
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On the other hand, by Lemma 2.4, it is easy to obtain

v1

u1
− v0

u0
= − (1 − 2a)2

6
≤ 0 (2.22)

with the equal only for a = 1/2.

(1) If a = 1/2, then it follows from (2.22) that {vn/un} is strictly increasing for n ∈ N0.
This together with Lemma 2.1(1) shows h(x) is strictly increasing on (0, 1). Conversely,
the monotonicity of h(x) requires us to satisfy

h′(0+) = lim
x→0+

2

πa

(∑∞
n=0 vnxn∑∞
n=0 unx

n

)′
= 2

πa

v1u0 − v0u1
u20

= − (1 − a)(1 − 2a)2

3π
≥ 0,

that is a = 1/2.
(2) If a ∈ (0, 1/2), then it follows from (2.22) that {vn/un} is strictly decreasing for 0 ≤

n ≤ 1 and {vn/un} is strictly increasing for n ≥ 1. Moreover, by Lemma 2.2(1),

Hh1,h2 (1
−) = lim

x→1−

{
3aKa(

√
x) − (1 + 2a − 2a2)

[Ea(
√
x) − (1 − x)Ka(

√
x)

]

2aKa(
√
x)

[Ea(
√
x) − (1 − x)Ka(

√
x)

] h2(x) − h1(x)

}

= sin(πa)

4(1 − a)
> 0.

This in conjunction with Lemma 2.1(2) shows that there exists a number x1 ∈ (0, 1) such
that h(x) is strictly decreasing on (0, x1) and strictly increasing on (x1, 1).
It is clear for h(0+) and h(1−). Moreover, by [49, 4.3.68],

πa

2(1 − a)

[
h(1−) − h(0−)

]
= πa

sin(πa)
− 1 − a + a2

1 − a
> 1 + π2a2

6
+ 7π4a4

360
− 1 − a + a2

1 − a

>
a2

[
1 + (1 − 2a)(23 − 18a + 36a2)

]

40(1 − a)
> 0.

��
Lemma 2.11 Let a ∈ (0, 1/2], c ∈ (0,∞) and define ζ(r) on (0, 1) by

ζ(r) ≡ ζ(r , a, c) = (c + r ′) log(1 + c/r ′) − cr2Ka/
[
2(1 − a)(Ea − r ′2Ka)

]

r ′ .

is strictly increasing and positive on (0, 1) if c ≥ maxa∈(0,1/2]{c∗(a), eR(a)/2}, where c∗(a)

is defined as in Theorem 1.2.

Proof Differentiation yields

d[(c + r ′) log(1 + c/r ′)]
dr

= r

r ′2
[
c − r ′ log(1 + c/r ′)

]
,

d

dr

[
cr2Ka

2(1 − a)(Ea − r ′2Ka)

]
= c

2(1 − a)

[
2rKa + r2 · 2(1−a)(Ea−r ′2Ka )

rr ′2
]
(Ea − r ′2Ka) − r2Ka · 2arKa

(Ea − r ′2Ka)2

= c

2(1 − a)

r
[
(2(1 − a)Ea + 2ar ′2Ka)(Ea − r ′2Ka) − 2ar2r ′2K2

a

]

r ′2(Ea − r ′2Ka)2
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and thereby

r ′2ζ ′(r)

= r

r ′
[
c − r ′ log(1 + c/r ′)

]
− cr

[
(2(1 − a)Ea + 2ar ′2Ka)(Ea − r ′2Ka) − 2ar2r ′2K2

a

]

2(1 − a)r ′(Ea − r ′2Ka)2

+ r

r ′

[
(c + r ′) log(1 + c/r ′) − cr2Ka

2(1 − a)(Ea − r ′2Ka)

]

= cr

r ′(Ea − r ′2Ka)2

{
(Ea − r ′2Ka)

2 log(1 + c/r ′) − Ka
[Ea − r ′2Ka − r ′2 (

(r ′2 + 2ar2)Ka − Ea
)]

2(1 − a)

}

= crKa

r ′

[
1

F(r2)
− h(r2)

2(1 − a)

]
, (2.23)

where F(x) and h(x) are defined as in Theorem 1.2 and Lemma 2.10, respectively.
If c ≥ maxa∈(0,1/2]

{
c∗(a), eR(a)/2

}
, then by Theorem 1.2(1) and Lemma 2.10 we obtain

1

F(r2)
− h(r2)

2(1 − a)
>

1

F(1−)
− 1

2(1 − a)
max{h(0+), h(1−)} = 0.

This together with (2.23) gives the monotonicity of ζ(r). Moreover, by Lemma 2.2(1),

ζ(0+) = (1 + c) log(1 + c) − c

2a(1 − a)
= c

2
ρ∗(c; a) ≥ 0,

since it has been shown that ρ∗(c; a) ≥ 0 for c ≥ c∗(a) in the proof of Theorem 1.2. This
completes the proof. ��

3 Proofs of Theorems 1.2, 1.3 and 1.4

Proof of Theorems 1.2 Let us denote f1(x) = F(a, 1 − a; 1; x) and f2(x) = log(1 +
c/

√
1 − x) for a ∈ (0, 1/2]. Then it suffices to show the monotonicity of f1(x)/ f2(x)

on (0, 1).
By differentiation and (1.1), (1.2), we obtain

f ′
1(x) = a(1 − a)F(a, 1 − a; 2; x)

1 − x
and f ′

2(x) = c(c − √
1 − x)

2(c2 − 1 + x)(1 − x)
,

which yields

f ′
1(x)

f ′
2(x)

= 2a(1 − a)(c2 − 1 + x)F(a, 1 − a; 2; x)
c(c − √

1 − x)
� 2a(1 − a)

c

f̂1(x)

f̂2(x)
.

Moreover, we can rewrite f̂1(x)/ f̂2(x), in terms of power series, as

f̂1(x)

f̂2(x)
= (c2 − 1 + x)

∑∞
n=0

(a)n(1−a)n
n!(n+1)! xn

c − ∑∞
n=0

(−1/2)n
n! xn

=
∑∞

n=0 Anxn∑∞
n=0 Bnxn

,

where

A0 = c2 − 1, An = (a)n−1(1 − a)n−1

n!(n + 1)!
[
c2n2 + (2 − c2)n + a(1 − a)(c2 − 1)

]
(n ≥ 1)
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and

B0 = c − 1, bn = (1/2)n−1

2n! (n ≥ 1).

By Lemma 2.1, we need to study the monotonicity of the sequence {Cn = An/Bn}∞n=0 to
show the monotonicity of f̂1(x)/ f̂2(x).

Elementary calculations lead to

C1 − C0 = (c − 1)
[
a(1 − a)c + a(1 − a) − 1

]
(3.1)

and

Cn+1 − Cn = (a)n−1(1 − a)n−1

(1/2)n(n + 2)! Qn(a, c) (n ≥ 1). (3.2)

Let ρ∗(a, c) = �(c)− R(a) and ρ∗(a, c) = �(c)−1/[a(1−a)], where �(c) is defined as
in Lemma 2.6. As in proof of Lemma 2.6, it can be easily seen that ρ∗(a, c) and ρ∗(a, c) are
strictly increasing for c ∈ (0,∞). Clearly, ρ∗(a, 0+) = 2− R(a) ≤ 2− 4 log 2 ≈ −0.7725,
ρ∗(a, 0+) = 2 − 1/[a(1 − a)] ≤ −2 for a ∈ (0, 1/2] and lim

c→∞ ρ∗(a, c) = lim
c→∞ ρ∗(a, c) =

∞. So there exist unique two numbers c∗(a), c∗(a) ∈ (0,∞) such that ρ∗(a, c∗(a)) = 0
and ρ∗(a, c∗(a)) = 0. Moreover, ρ∗(a, c) < 0 for c ∈ (0, c∗(a)) and ρ∗(a, c) > 0 for
c ∈ (c∗(a),∞); ρ∗(a, c) < 0 for c ∈ (0, c∗(a)) and ρ∗(a, c) > 0 for c ∈ (c∗(a),∞).

It was proved in [50, Lemma 2.1] that a �→ 1/[a(1−a)]−R(a) is strictly increasing from
(0, 1/2] onto (1, 4− 4 log 2] and so 1/[a(1− a)] > R(a). Combining this with Lemma 2.6,
we obtain ρ∗(a, 1) = �(1) − R(a) ≤ 0 and ρ∗(a, c∗(a)) = 1/[a(1 − a)] − R(a) > 0, that
is to say,

1 ≤ c∗(a) < c∗(a). (3.3)

Let ρ̃(a) = (1− a + a2)ρ∗(a, c2(a)) = 1− 1/[a(1− a)]− 2 log[a(1− a)], where c2(a)

is given as in Lemma 2.5. Then it follows from

ρ̃(1/2) = 2 log 4 − 3 ≈ −0.2274 and ρ̃′(a) = (1 − 2a)(1 − 2a + 2a2)

a2(1 − a)2
> 0

that ρ∗(a, c2(a)) < 0 and so by the property of ρ∗(a, c) shows

c2(a) < c∗(a). (3.4)

(1) Sufficiency. If c ≥ max{c∗(a), eR(a)/2}, then we have c > c2(a) by (3.4) and ρ∗(a, c) ≥
0, log c ≥ R(a)/2.
By (3.1) and (3.2), it follows from c > c2(a) and Lemma 2.5 that C1 > C0, C2 > C1

and Cn+1 < Cn for n ≥ 3. In either case C3 ≥ C2 or C3 < C2, there exists a number
n0 = 2 or 3 such that Cn is increasing for 0 ≤ n ≤ n0 and Cn is decreasing for n ≥ n0.
Moreover, from (1.1) and (1.2) we clearly see that

H f̂1, f̂2
(x)

= 2
[
c
√
1 − x − (1 − x)

] [
1

2
a(1 − a)(c2 − 1 + x)F(1 + a, 2 − a; 3; x) + F(a, 1 − a; 2; x)

]

− (c2 − 1 + x)F(a, 1 − a; 2; x) → − c2 sin(aπ)

a(1 − a)π
< 0 (3.5)

as x → 1−.
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Lemma 2.1(2) together with (3.5) and the piecewise monotonicity of Cn implies that
there exists δ1 ∈ (0, 1) such that f̂1(x)/ f̂2(x) is strictly increasing on (0, δ1) and strictly
decreasing on (δ1, 1), so is f ′

1(x)/ f
′
2(x). Due to (2.2) and f2(x) > 0, H f1, f2(x) is strictly

increasing on (0, δ1) and strictly decreasing on (δ1, 1).
Further, it can be obtained from (1.1) and (1.2) that

H f1, f2 (0
+)

= lim
x→0+

[
2a(1 − a)

c
(c + √

1 − x)F(a, 1 − a; 2; x) log
(
1 + c√

1 − x

)
− F(a, 1 − a; 1; x)

]

= 2a(1 − a)(1 + c) log(1 + c) − c

c
= a(1 − a)ρ∗(a, c) (3.6)

and

H f1, f2(1
−) = lim

x→1−

[
2 sin(πa)

π
log

(
1 + c√

1 − x

)
− F(a, 1 − a; 1; x)

]

= lim
x→1−

sin(πa)

π

[
2 log

(
1 + c√

1 − x

)
+ log(1 − x) − R(a)

]

= 2 sin(πa)

π

[
log c − R(a)

2

]
. (3.7)

Since ρ∗(a, c) ≥ 0 and log c ≥ R(a)/2, we clearly see from (3.6) and (3.7) that
H f1, f2(0

+) ≥ 0 and H f1, f2(1
−) ≥ 0. According to this with the piecewise monotonicity

of H f1, f2(x), it can be easily seen that H f1, f2(x) > 0 for x ∈ (0, 1). This together with
(2.1) and f ′

2(x) > 0 shows that f1(x)/ f2(x) is strictly increasing on (0, 1), so is F(x).
Necessity. Due to f ′

2(x) > 0 and (2.1), the necessary condition for the monotonicity of
f1(x)/ f2(x) requires us to satisfy

H f1, f2(0
+) ≥ 0 and H f1, f2(1

−) ≥ 0.

This in conjunction with (3.6) and (3.7) implies ρ∗(a, c) ≥ 0 and log c ≥ R(a)/2.
By the property of ρ∗(a, c), we obtain c ≥ c∗(a) and c ≥ eR(a)/2, equivalently c ≥
maxa∈(0,1/2]{c∗(a), eR(a)/2}.

(2) For 0 < c ≤ maxa∈(0,1/2]{c∗(a), c1(a)}, that is 0 < c ≤ c∗(a) or 0 < c ≤ c1(a),
equivalently, 0 < c ≤ c∗(a) or 1 < c ≤ c1(a) by (3.3) and Lemma 2.5. We divide the
proof into two cases.

Case 1: 0 < c ≤ c∗(a). In this case, it follows from the property of ρ∗(a, c) that ρ∗(a, c) ≤ 0,
that is �(c) ≤ R(a). It was proved in [3, Lemma 2.3] that the function

x �→ Ka(
√
x)

R(a) − log(1 − x)

is strictly decreasing on (0, 1) for a ∈ (0, 1/2]. According to this with Lemma 2.6, we
conclude that

F(x) = Ka(
√
x)

R(a) − log(1 − x)
· R(a) − log(1 − x)

log(1 + c/
√
1 − x)

is strictly decreasing on (0, 1).
Case 2: 1 < c ≤ c1(a). From Lemma 2.5 and (3.2) we clearly see that Cn+1 < Cn for n ≥ 1

and 1 < c ≤ c2(a). By (3.1), it is easy to verify that C1 ≤ C0. In other words, the
sequence Cn is decreasing for n ∈ N0. This in conjunction with Lemma 2.1(1) shows
that f ′

1(x)/ f
′
2(x) is strictly decreasing on (0, 1) and so is H f1, f2(x) by (2.2). Moreover,
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1 < c ≤ c2(a) and (3.4) together with the property of ρ∗(a, c) lead to the conclusion
that ρ∗(a, c) < 0. Combining this with (3.6) and the monotonicity of H f1, f2(x) yields
H f1, f2(x) < 0 for x ∈ (0, 1). Due to f ′

2(x) > 0 and (2.1), we conclude that F(x) is
strictly decreasing on (0, 1).

��
Remark 3.1 We claim that maxa∈(0,1/2]{c∗(a), c1(a)} < maxa∈(0,1/2]{c∗(a), eR(a)/2}.

From (3.3), (3.4) and Lemma 2.5 we clearly see that c∗(a) < c∗(a) and c1(a) < c2(a) <

c∗(a) for a ∈ (0, 1/2]. On the other hand, ρ∗(eR(a)/2; a) = �(eR(a)/2) − R(a) > 0 follows
from

lim
x→∞

[
�(ex/2) − x

] = 0 and
d

dx

[
�(ex/2) − x

] = −e−x/2 log(1 + ex/2) < 0.

This gives c∗(a) < eR(a)/2. From [50, Lemma 2.1] we obtain 1/[a(1 − a)] − R(a) <

4 − 4 log 2, which yields

c2(a) < R(a) + 3 − 4 log 2 < eR(a)/2, (3.8)

since x �→ ex/2 − x − 3 + 4 log 2 is strictly increasing on [4 log 2,∞).
In Lemma 2.5, it only remains to discuss the sign of Qn(a, c) for c1(a) < c < c2(a).

However, in this case, it can be easily seen thatQ1(a, c) > 0 in the proof of Lemma 2.5 and
so C1 < C2 by (3.2), while C0 > C1 and Cn > Cn+1 for n ≥ 3 by Lemma 2.5 and (3.1).
This kind of sequence {Cn}∞0 cannot be handled. So it is not easy to find the sufficient and
necessary condition such that F(x) is decreasing on (0, 1).

Remark 3.2 It is worth pointing out that there is no strict comparison between c∗(a) and
c1(a), and also between c∗(a) and eR(a)/2 for a ∈ (0, 1/2].

By the properties of ρ∗(a, c) and ρ∗(a, c), it follows from

lim
a→0+ ρ∗(a, c1(a)) = −∞, lim

a→1/2
ρ∗(a, c1(a)) = 4 log 2

3
,

lim
a→0+ ρ∗(a, eR(a)/2) = −1, lim

a→1/2
ρ∗(a, eR(a)/2) = −4 + 5

2
log 5 ≈ 0.02359

that c1(a) < c∗(a), eR(a)/2 < c∗(a) near a = 0 and c1(a) > c∗(a), eR(a)/2 > c∗(a)

near a = 1/2. More precisely, numerical experiments show that there are two numbers
a∗ ≈ 0.26372 and a∗ ≈ 0.43722 such that

• c1(a) < c∗(a) for a ∈ (0, a∗) and c1(a) > c∗(a) for a ∈ (a∗, 1/2];
• eR(a)/2 < c∗(a) for a ∈ (0, a∗) and eR(a)/2 > c∗(a) for a ∈ (a∗, 1/2].

Following from Ramanujan’s asymptotic formula, we can take c = eR(a)/2. The following
corollary can be derived from Theorem 1.3.

Corollary 3.1 The function

r �→ Ka(r)

log
[
1 + eR(a)/2/r ′]

is strictly increasing from (0, 1) onto
(
π/[2 log(1 + eR(a)/2)], sin(aπ)

)
if and only if a∗ ≈

0.43722 ≤ a ≤ 1/2, and neither increasing nor decreasing on (0, 1) if a ∈ (0, a∗).
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Proof In Remark 3.2, it has been shown that eR(a)/2 ≥ c∗(a) if and only if a ∈ [a∗, 1/2].
If a ∈ (0, a∗), then eR(a)/2 < c∗(a), that is ρ∗(a, eR(a)/2) < 0. This together with

(3.6) and (3.7) gives H f1, f2(0
+) < 0 and H f1, f2(1

−) = 0. From (3.8) we clearly see that
eR(a)/2 > c2(a). According to this with the proof of Theorem 1.2(1), we know that there
exists a number x∗ ∈ (0, 1) such that H f1, f2(x) < 0 for x ∈ (0, x∗) and H f1, f2(x) > 0 for
x ∈ (x∗, 1). So the function is neither increasing nor decreasing on (0, 1). ��

Recall that the generalized Grötzsch ring function μa(r) (see [5, (1.3)]) can be defined in
the theory of generalized Ramanujan modular equation by

μa(r) = π

2 sin(πa)

Ka(r ′)
Ka(r)

.

Due to the monotonicity of F(r ′)/F(r), the following corollary can be derived immediately
from Theorem 1.2.

Corollary 3.2 For each a ∈ (0, 1/2],
(1) if c ≥ maxa∈(0,1/2]{c∗(a), eR(a)/2}, then the inequality

π2

4 sin2(πa) log(1 + c)

log(1 + c/r)

log(1 + c/r ′)
< μa(r) < log(1 + c)

log(1 + c/r)

log(1 + c/r ′)

holds for r ∈ (0, 1);
(2) if 0 < c ≤ maxa∈(0,1/2]{c∗(a), c1(a)}, then the inequality

log(1 + c)
log(1 + c/r)

log(1 + c/r ′)
< μa(r) <

π2

4 sin2(πa) log(1 + c)

log(1 + c/r)

log(1 + c/r ′)

holds for r ∈ (0, 1).

Proofs of Theorems 1.3 Logarithmical differentiating G(x) gives

G ′(x)
G(x)

= − λ

1 − x
+ (1 − a)[Ea − (1 − x)Ka]

x(1 − x)Ka
= 
(

√
x),

where 
 is defined by Lemma 2.9.

It follow fromLemma 2.6 that F ′(x)
F(x) is strictly decreasing if and only if λ ≥ a(1−a)(a2−a+2)

2
and strictly increasing if and only if λ ≤ 0. Consequently, F(x) is logarithmically concave

on (0, 1) if and only if λ ≥ a(1−a)(a2−a+2)
2 and logarithmically convex on (0, 1) if and only

if λ ≤ 0. This completes the proof. ��
Proofs of Theorems 1.4 By differentiation, we obtain

F ′(x) = (1 − a)
[Ea(

√
x) − (1 − x)Ka(

√
x)

]

x(1 − x) log(1 + c/
√
1 − x)

− cKa(
√
x)

2(1 − x)(c + √
1 − x)

[
log(1 + c/

√
1 − x)

]2

= 2(1 − a)
[Ea(

√
x) − (1 − x)Ka(

√
x)

]
log(1 + c/

√
1 − x) − cxKa(

√
x)/(c + √

1 − x)

2x(1 − x)[log(1 + c/
√
1 − x)]2

= (1 − a)
Ea(

√
x) − (1 − x)Ka(

√
x)

x
· 1√

1 − x
(
c + √

1 − x
) [
log(1 + c/

√
1 − x)

]2 · ζ(
√
x),

where ζ(r) is defined as in Lemma 2.11.
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It is not difficult to verify that the function x �→ x(c + x)[log(1 + c/x)]2 is strictly
increasing and positive on (0, 1). Combining this with Lemmas 2.2(2) and 2.11, we con-
clude that F ′(x) is the product of three positive and increasing functions on (0, 1) if
c ≥ maxa∈(0,1/2]

{
c∗(a), eR(a)/2

}
. ��

Note that Ka(
√
2/2) for a ∈ (0, 1/2] can be expressed as

Ka(
√
2/2) = sin(πa)�( 1−a

2 )�( a2 )

4
√

π
,

which can be found in the literature [5, 4.4 Particular values].
Due to the log-concavity of G(x) and convexity of F(x), we obtain

G(x)G(1 − x) ≤ √
G(1/2) =

√
sin(πa)�( 1−a

2 )�( a2 )

2λ+2
√

π
:= σ(a, λ), (3.9)

F(x) + F(1 − x)

2
≥ F(1/2) = sin(πa)�( 1−a

2 )�( a2 )

4
√

π log(1 + √
2c)

:= τ(a, c). (3.10)

By substituting x = r2 in (3.9) and (3.10), Theorems 1.3 and 1.4 give rise to the following
corollaries.

Corollary 3.3 For λ ≥ [a(1 − a)(a2 − a + 2)]/2, the inequality
(rr ′)2λKa(r)Ka(r

′) ≤ σ(a, λ)

holds for r ∈ (0, 1) with the best constant σ(a, λ) given in (3.9).

Corollary 3.4 For c ≥ maxa∈(0,1/2]
{
c∗(a), eR(a)/2

}
, the inequality

Ka(r)

log(1 + c/r ′)
+ Ka(r ′)

log(1 + c/r)
≥ 2τ(a, c)

holds for r ∈ (0, 1) with the best constant τ(a, c) given in (3.10), where c∗(a) is defined as
in Theorem 1.2.

Applying L’Hôpital Monotone Rule, it follows easily from Theorem 1.4 that

F(x) − F(0)

x
and

F(1) − F(x)

1 − x
(3.11)

are increasing on (0, 1) for c ≥ maxa∈(0,1/2]
{
c∗(a), eR(a)/2

}
, which gives the following

corollary by putting x = r2 in (3.11).

Corollary 3.5 For c ≥ maxa∈(0,1/2]
{
c∗(a), eR(a)/2

}
, both of the functions

r �→ 1

r2

[ Ka(r)

log(1 + c/r ′)
− π

2 log(1 + c)

]
and r �→ 1

r ′2

[
sin(πa) − Ka(r)

log(1 + c/r ′)

]

are strictly increasing on (0, 1). Consequently, the double inequality

π

2 log(1 + c)
+ π

[
a(1 − a)�(c) − 1

]

4(1 + c)
[
log(1 + c)

]2 r
2 <

Ka(r)

log(1 + c/r ′)
< sin(πa)r2 + π

2 log(1 + c)
r ′2

holds for r ∈ (0, 1), where �(c) is defined as in Lemma 2.6.
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