报告题目:The coarse Baum-Connes conjecture for relative expander graphs
报告人:王勤 教授 (华东师范大学)
报告时间:2022年5月10日 (周二)10:00-11:00
报告地点:腾讯会议:853491396
报告摘要:Expander graphs are highly connected sparse graphs, which do not coarsely embed into Hilbert space, and are sources for counterexamples to the coarse Baum-Connes conjecture. Recently, G. Arzhantseva and R. Tessera introduce a notion of relative expander to give the first example of sequences of finite Cayley graphs of uniformly bounded degree, and even an example of finitely generated group, which do not coarsely embed into any Lp-spaces for any p>1, yet do not contain any genuine expander. We show that the coarse Baum-Connes conjecture holds for all these relative expander graphs and finitely generated groups. This is joint work with Jintao Deng (University of Waterloo) and Guoliang Yu (TAMU).
报告人简介:王勤,华东师范大学数学科学学院算子代数研究中心教授、博士生导师, 主要从事算子代数、粗几何、非交换几何等领域的研究,在非交换几何的重要问题“粗Baum-Connes猜想”、“粗Novikov猜想”等方面取得了若干重要成果,在J. Reine Angew. Math.、Adv. Math.、J. Funct. Anal. 等杂志发表多篇文章,曾入选教育部新世纪优秀人才支持计划、上海市曙光学者、上海市浦江学者。
版权所有 ©️ 杭州师范大学研究生院 公安备案号:33011002011919 浙ICP备11056902号-1 技术支持:亿校云